Molecular Subgroups Identified by Machine Learning Enable Accurate Prognostication of Papillary Thyroid Cancer

Steven Craig, MD^{1, 2, *}, Cynthia Stretch, PhD^{3, *}, Farshad Farshidfar, MD, PhD³, Dropen Sheka⁴, Nikolay Alabi⁴, Adrian Harvey, MD⁵, Karen Kopciuk, PhD⁶, Young Joo Park, MD, PhD⁷, Oliver F. Bathe, MD, MSc^{3,5}

¹ Department of Surgery, Illawarra Shoalhaven Local Health District, NSW, Australia, ² Graduate School of Medicine, University of Calgary, Calgary, Calgary, AB, Canada, ⁴ Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada, ⁵ Department of Surgery, University of Calgary, AB, Canada, ⁶ Population Health Research, Alberta Health Services, Calgary, AB, Canada, ⁷ Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea

BACKGROUND

- Clinical management of papillary thyroid cancer (PTC) depends on an accurate estimate of prognosis
- Prognostication is currently based on clinicopathological variables which are sub-optimal and can only be fully implemented after surgery.
- Objective: To derive an accurate molecular prognostic tool that can be implemented prior to surgery.

METHODS

Machine learning algorithm identifv features created to with associated recurrence (HighLifeR[™])

HighLifeR[™]

MACHINE LEARNIN

TCGA RNASeq

Applied to PTC annotated by The Cancer Genome Atlas (1) (N=501)

82 Genes Identified

Identified genes most closely associated with recurrence

subjected Genes to unsupervised clustering to identify prognostic groups

- Prognostic signature validated
- internal TCGA cohort (N=167)
- external Korean cohort (N=124)

RESULTS

Two distinct intermediate clusters

Figure 1. Unsupervised clustering of prognostic genes identified by HighLifeR[™] resulted in four distinct clusters

Heatmap (A) showing the differences in expression in the 82 genes in the four clusters identified, including two intermediate-risk clusters. Kaplan Meier curves showing the differences in progression-free survival between the four prognostic subgroups in the discovery cohort (B) (n=334) and validation dataset (C) (n=167)

Figure 2. Performance of mRNA-based prognostic risk versus ATA risk stratification for recurrence

(A) Percent recurrences in patients assigned into the low-, intermediate-, and high-risk groups by the ATA and the mRNA-based prognostic risk, (B) and (C) Time-dependent area under the receiver operating characteristic curves for the mRNA-based predicted risk and ATA-predicted risk. (D) Alluvial plot showing how patients originally assigned into risk groups by ATA are reclassified by the mRNA-based prognostic risk classifiers.

Figure 3. Distinct molecular and biological differences seen between the groups

RAS and TERT genes.

The most striking differences were in variant type, thyroid differentiation score (TDS), BRAF-RAS score (BRS), and number of mutations in BRAF,

subaroup

Figure 4. Biological differences between groups may guide therapeutic approaches.

T-cell inflamed gene expression scores for each of the mRNA-based risk groups are shown. High scores are prerequisites for clinical benefit from PD-1 blockade (2). High-risk group was characterized by an immunosuppressive microenvironment.

CONCLUSIONS

- Our mRNA-based prognostic risk method outperforms clinicopathological risk stratification
- mRNA-based prognostic risk can be applied preoperatively, thereby potentially directing surgical management
- Biological features of the four molecular subgroups could direct future therapies including immune checkpoint inhibitors and re-differentiation strategies using EZH2 inhibitors.

REFERENCES

- Cancer Genome Atlas Research, N. (2014). Integrated genomic characterization of papillary thyroid carcinoma. Cell 159. 676-690.
- Cristescu, R., Mogg, R., Ayers, M., Albright, A., Murphy, E., Yearley, J., Sher, X., Liu, X.Q., Lu, H., Nebozhyn, M., et al. (2018). Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362.

UNIVERSITY OF WOLLONGONG AUSTRALIA

